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Background: In cancer alternative RNA splicing represents one mechanism for flexible gene regulation,
whereby protein isoforms can be created to promote cell growth, division and survival. Detecting novel
splice junctions in the cancer transcriptome may reveal pathways driving tumorigenic events. In this
regard, RNA-Seq, a high-throughput sequencing technology, has expanded the study of cancer transcrip-
tomics in the areas of gene expression, chimeric events and alternative splicing in search of novel
biomarkers for the disease.
Results: In this study, we propose a new two-dimensional peak finding method for detecting differential
splice junctions in prostate cancer using RNA-Seq data. We have designed an integrative process that
involves a new two-dimensional peak finding algorithm to combine junctions and then remove irrelevant
introns across different samples within a population. We have also designed a scoring mechanism to
select the most common junctions.
Conclusions: Our computational analysis on three independent datasets collected from patients diag-
nosed with prostate cancer reveals a small subset of junctions that may potentially serve as biomarkers
for prostate cancer.
Availability: The pipeline, along with their corresponding algorithms, are available upon request.

� 2016 Elsevier Inc. All rights reserved.
1. Background

Prostate cancer is a complex disease, and diagnosis is becoming
progressively more prevalent. Worldwide, prostate cancer is the
second most common cancer in men with more than one million
men diagnosed in 2012, resulting in an estimated 307,000 deaths
[1]. As with all cancers, the study of prostate cancer at the molec-
ular level uncovers the regulatory and transcriptional mechanisms
of the tumor biology. Currently a top priority in the prostate cancer
biology field is to discover biomarkers to differentiate between
clinically significant disease with a high risk of progression and
clinically insignificant disease with low risk of progression. The
lack of such biomarkers is a major obstacle in guiding treatment
decisions for prostate cancer patients.

The advent of RNA-Seq has revolutionized the way in which
genomic and transcriptomics studies are conducted. RNA-Seq
allows for the reading of the transcriptome at a single-nucleotide
resolution and reveals unexplored genomic territories [2,3]. This
has led to a better understanding of the unknown regulatory mech-
anisms of transcription and discovery of novel transcripts unde-
tected by conventional tools. This high-throughput technique is
currently being used to identify non-conventional biomarkers,
such as noncoding RNA, alternative splicing, and gene fusion
[2,3]. Of particular interest is alternative splicing of RNA that pro-
duces protein isoforms with potentially differing functions. For
example, in ovarian and breast tumors, around half of all active
alternative splicing events are changed [4]. RNA-Seq can also be
used to measure transcriptomic activity and transcriptome assem-
bly [5–8] to better understand the mechanism of alternative splic-
ing and the regulation of corresponding protein isoforms. Since
studies using RNA-Seq data for prostate cancer are in early days,
there are no standard protocols using RNA-Seq to determine the
role of alternate splicing events in initiation, progression and inva-
sion of this disease. Using machine learning approaches for RNA-
Seq data analysis, researchers are able to remove redundant and
less significant information and provide a selection of potential
biomarkers for biological validation using conventional laboratory
analysis. Nonetheless, a typical RNA-Seq experiment produces a
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large amount of data, thus demanding significant computational
resources in both time and space.

In 2012, Feng et al. presented a comprehensive review of the
most recent studies on alternative splicing in cancer using RNA-
Seq data [9], including an overview of several publically available
RNA-Seq datasets and the most recent open source bioinformatics
tools for RNA-Seq data analysis. Recent studies using RNA-Seq for
prostate cancer analysis include genome wide association and vari-
ation studies, non-coding RNAs (e.g., microRNA, lincRNA and
siRNA), somatic mutations, chimeric RNA and gene fusion [10].
Kannan et al. reported on new chimeric RNA events in prostate
cancer using RNA-Seq [10]. Their study was conducted on 20
human prostate cancer and 10 matched benign prostate tissues
from patients who had received no preoperative therapy prior to
radical prostatectomy. They found a small group of 27 novel highly
recurrent chimeric RNA events within the prostate cancer tissues
only, suggesting a link between increased chimeric RNA events
and prostate cancer.

Pflueger et al. [11] used RNA-Seq in 25 human prostate cancer
samples to identify novel gene fusions. They reported seven new
gene fusions related to prostate cancer, including TMPRSS2-ERG.
TMPRSS2-ERG gene fusion is present in 50–90% of human prostate
cancers and has been identified as an early molecular event associ-
ated with invasion of the disease [12]. Ren et al. also conducted a
study to identify recurrent gene fusions in 14 primary prostate
tumors from a Chinese population. Although they reported that
TRMPRSS2-ERG fusion occurs at very low frequency, they also
identified two novel gene fusions, CTAGE5-KHDRBS3 and USP9Y-
TTTY15, which occur frequently in the Chinese cohort, [13]. These
conflicting reports also illustrate the disparities among prostate
cancer patients of different ethnic backgrounds.

Xu et al. identified 92 new genes with somatic mutations in
human prostate cancer [14]. Their study used RNA-Seq data from
five cancer patients to detect variants of chromosomal rearrange-
ments, insertions and deletions. Of particular significance, they
identified a frame shift mutation in the coding region of TNFSF10
that disrupts its ability to induce apoptosis, and hence, promotes
abnormal tumor progression. Prensner et al. [15] focused on new
noncoding RNA, finding an unannotated lincRNA, PCAT-1, discov-
ered to be a prostate specific regulator of cell proliferation.

Many recent studies use methods to find genes (related to splice
junction or chimeric events) that act as drivers of cancer, they fail
however to exploit the high-resolution features of RNA-Seq. Recon-
structing the transcriptome, inferring protein isoforms, and the
corresponding protein functions and interactions as participants
in transcriptional and regulatory pathways, offer an integrative
approach worth implementing.

There are different methods for finding alternative splicing
events in RNA-Seq data. PASSion [16] is a pattern growth
algorithm-based pipeline for splice site detection in paired-end
RNA-Seq reads with the ability of detecting junctions that do not
have known splicing motifs, and which cannot be found by other
tools. TopHat2 [17] aligns reads with various lengths and allows
for variable-length insertions and deletions with respect to the ref-
erence genome. It also has the ability to identify novel splice sites
with direct mapping to known transcripts. rMAT [18] is a statistical
tool for detecting differential alternative splicing events from repli-
cate RNA-Seq data. rMAT has the ability to analyze both unpaired
replicates and paired replicates, such as case-control matched pairs
in clinical RNA-Seq datasets. spliceR [19] is another method for
detecting single or multiple exon skipping, intron retention and
mutually exclusive exon events. spliceR is also able to annotate
the genomic coordinates of the differentially spliced elements
and facilitate the downstream sequence analysis. One of the draw-
backs of these methods is that they tend to find the spliced sites in
each sample separately and there is no procedure for tracking
those sites across different samples within a dataset and identify
those that are consistently present in different samples.

In this paper, we propose a novel model for detecting differen-
tial splice junctions in prostate cancer using RNA-Seq data. The
model considers an integrative approach that includes a new
two-dimensional peak finding algorithm to combine and remove
irrelevant junctions and a scoring mechanism to select the most
informative junctions. Our analysis on three independent datasets
reveals a small subset of 12 junctions that could be used as poten-
tial biomarkers for prostate cancer. The main contributions of this
study are: (i) developing a model for combining and filtering out
splice junctions on large scale data using peak-finding in 2-D his-
tograms, and (ii) designing a method used to identify splice junc-
tions as biomarkers based on transcriptomic measures among
cancer samples.
2. Results

This study involves computational experiments on three inde-
pendent datasets (see Methods for descriptions of the datasets).
We used Kannan’s and Ren’s datasets for obtaining the most signif-
icant junctions, and Rajan’s dataset as an independent set to
validate our findings. In the first computational experiment, we
used PASSion with default parameters [16] to obtain a total of
2,325,352 splice junctions across all chromosomes from the 20
cancer samples in Kannan’s dataset. From Ren’s dataset,
2,032,719 junctions across 14 cancer samples were obtained.

Fig. 1 shows the distribution of the junctions across different
scores found in both datasets. The x-axis represents the score while
the y-axis contains the number of junctions. As seen in the figure,
most junctions fall around the middle of the score spectrum (�2,
�1, 0, 1, 2), while only a fraction of junctions at the maximum ends
of the spectrum (�20, 20). This suggests that only a small percent
of junctions (0.11% and 0.34%, in Kannan’s and Ren’s datasets
respectively) exist in all cancer samples. Fig. 2 shows the number
of junctions common to both datasets. As seen in the figure, 12
junctions are present in at least all but one cancer sample in both
datasets. Out of these 12 junctions, 4 of them are found in all can-
cer samples for both datasets. The small number of common junc-
tions between these datasets may be due to the demographic
differences between the samples. While patients in Kannan’s data-
set are Caucasian, Ren’s dataset contains cancer samples from a
Chinese population.

We validated the detected junctions using 4 samples from
Rajan’s dataset corresponding to prostate cancer patients prior to
any treatment. Table 1 shows the 12 junctions common in both
datasets along with their corresponding scores in Rajan’s dataset.
The first three columns show the genomic positions of the junc-
tions, while the next three columns show the number of samples
that contain each particular junction. The final score column uni-
fies the results of all three datasets in one measure, yielding the
percentage of tumor samples that contain each particular junction
across all three datasets. For example, junction 1 (Table 1, Row 1),
was found in 19 out of 20 tumor samples in Kannan’s dataset and
in all 14 tumor samples in Ren’s dataset. This particular junction
was only found in 2 of the 4 samples in Rajan validation dataset.
Hence, the total number of samples containing junction 1 is 35
out of a total of 38 samples among the three datasets, or equiva-
lently 92.1% of all samples. The last column shows the genes corre-
sponding to each junction, which have been obtained using the
BioMart tool [20].

As seen in Table 1, 10 out of 12 junctions have perfect score (4
out of 4) in Rajan’s dataset. This shows the power of generalization
of the proposed method to identify junctions across different pros-
tate cancer datasets.



Fig. 1. Distribution of junctions across different scores in Kannan’s dataset (top) and Ren’s dataset (bottom).

Fig. 2. Venn diagram illustrating the number of junctions commonly identified in
both Kannan’s and Ren’s datasets. (a) Junctions present in all samples and (b)
junctions present in at least all but one sample.
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In the next step, the Human Protein Atlas [21] was used to study
previous annotations of these genes and their association with
prostate cancer. As shown in Table 2, prostate cancer tissue stain-
ing for protein products of these genes was estimated at four dif-
ferent levels, including high, medium, low and not detected. The
last column of the table, Normal Tissue Staining, represents the
level of staining for the protein product of that particular gene in
noncancerous tissue.

Prostate cancer-staining information was found for 11 out of
the 12 studied genes. Although, there was no information available
regarding prostate cancer-staining of PMEPA1, previous study
showed an association between this gene and prostate cancer
progression [22]. Among the genes found, GALNT3 appears to have
high staining in prostate cancer tumor cells, while only medium
staining in normal prostate tissues, which is interesting consider-
ing its link to prostate cancer [23]. CUL9, on the other hand, has
medium staining in normal cells, while there was no detectable
staining in the majority of the prostate cancer samples. IL17RA also
stains low in normal prostate cells, while there was no detectable
staining in the majority of the cancer samples. NIPAL3, as another
example, had medium staining in the majority of cancer samples,
while in the normal samples, the staining is usually high. It needs
to be mentioned that, sometimes, it is possible that the degree of
staining does not correlate directly with RNA splicing events,
because the staining may not recognize or distinguish different
protein isoforms depending on epitope for the antibody.

The circos plot of Fig. 3 shows the histograms of the junctions in
Kannan’s dataset (red) and in Ren’s dataset (blue), as well as the
genomic position of the genes containing detected junctions. The
height of the histogram shows the score of the junctions at each
locus (genomic position).

We also analyzed the complexity of our proposed model based
on the input size (number of junctions). The overall complexity of
the model is of O(n2), which shows that the elapsed time for find-
ing the significant junctions is proportional to the square of the
number of junctions used as input of the model. More details about
the complexity analysis of the proposed model can be found in
Appendix A.



Table 1
Identified junctions that are in common in all datasets with the highest score.

No. Chr. Start End Kannan’s dataset score Ren’s dataset score Rajan’s dataset score Final score (%) Gene

1 1 24,790,608 24,792,492 19 14 2 92.1 NIPAL3
2 1 206,765,177 206,766,959 20 14 4 100.0 EIF2D
3 2 166,621,566 166,626,686 19 13 4 94.7 GALNT3
4 3 120,347,375 120,351,983 19 14 4 97.4 HGD
5 3 131,677,802 131,678,144 20 14 4 100.0 CPNE4
6 4 141,310,458 141,311,773 19 14 4 97.4 CLGN
7 6 43,188,643 43,188,886 20 13 4 97.4 CUL9
8 15 64,373,349 64,380,885 19 14 4 97.4 FAM96A
9 19 35,612,012 35,612,124 20 14 4 100.0 FXYD3

10 20 56,234,753 56,284,530 20 13 4 97.4 PMEPA1
11 22 17,583,191 17,584,378 20 14 4 100.0 IL17RA
12 X 21,995,354 21,996,078 19 14 3 94.7 SMS

Table 2
Cancer-staining information of the genes that contain the selected junctions with prostate cancer.
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NIPAL3 1 24790608 24792492 92.1% 36.4% 63.6% 0.0% 0.0% High

EIF2D 1 206765177 206766959 100.0% 0.0% 18.2% 27.3% 54.5% Not 
Detected

GALNT3 2 166621566 166626686 94.7% 66.7% 25.0% 8.3% 0.0% Medium

HGD 3 120347375 120351983 97.4% 0.0% 45.4% 27.3% 27.3% Medium

CPNE4 3 131677802 131678144 100.0% 0.0% 0.0% 0.0% 100.0% Not 
Detected

CLGN 4 141310458 141311773 97.4% 10.0% 40.0% 20.0% 30.0% Medium

CUL9 6 43188643 43188886 97.4% 0.0% 25.0% 8.3% 66.7% Medium

FAM96A 15 64373349 64380885 97.4% 0.0% 0.0% 27.3% 72.7% Not 
Detected

FXYD3 19 35612012 35612124 100.0% 8.3% 66.7% 25.0% 0.0% Medium
PMEPA1 20 56234753 56284530 97.4% --- --- --- --- ---
IL17RA 22 17583191 17584378 100.0% 0.0% 8.3% 8.3% 83.4% Low

SMS X 21995354 21996078 94.7% 0.0% 16.7% 8.3% 75.0% Not 
Detected
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3. Discussion and conclusion

This study uses a novel method for detecting differential splice
junctions in prostate cancer using RNA-Seq data. One of the main
differences between the proposed model and other existing meth-
ods is that instead of analyzing spliced events for each sample sep-
arately, we unify all junctions corresponding to different samples
and identify those that are present in most of the cancer samples
but not in normal samples or vice versa. Computational analysis
of three independent datasets from prostate cancer patients
revealed a small subset of junctions that may serve as biomarkers
for prostate cancer. Of the 12 junctions isolated, several had pre-
dicted roles as tumor suppressors; for example PMEPA1 has been
implicated as a tumor suppressor functioning downstream of
TGF-B signaling during the progression of prostate cancer [24].
CUL9 functions as a p53 binding protein and induces rapid tumori-
genesis when deleted in mouse models [25] and FAM96A is a pro-
apoptotic tumor suppressor deleted in gastrointestinal stromal
tumors [26]. It will be an important next step to determine how
alternate splicing of these proteins may impact their tumor sup-
pressor functions, and how this may participate in the progression
of prostate cancer. Other isolated candidates may actively promote
tumorigenesis via the alteration in splicing – one such example is
the cytokine receptor IL17RA. Interleukin-17 (IL-17) works though
its receptor to promote the pathogenesis of many inflammatory
disorders and elevated levels of IL-17 are associated with risk of
tumor progression [27,28]. Alternate splice variants of the receptor
have been noted to both facilitate and to antagonize signaling [29],
hence determining the biological role of this novel predicted splice
site and the implications of this in the progression of prostate can-
cer is an exciting and important next step. There are also splice
sites detected in candidates not previously implicated in cancer,
representing avenues that may provide completely novel insight
into prostate cancer initiation and/or progression.

4. Methods

The proposed method consists of various steps that include
detecting junctions, unifying junctions with almost identical start
and end positions, filtering out less common junctions using a pro-
posed scoring model, and finally, using a SVM-based classifier to
identify the most significant junctions. A diagram of the entire



Fig. 3. The most significant junctions detected using samples in both Kannan’s and
Ren’s datasets.
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process is shown in Fig. 4. Each step of the process is discussed in
more detail in the following sections.

4.1. Dataset

In the computational experiments, we have used three datasets
consisting of raw RNA-Seq data obtained from patients diagnosed
with prostate adenocarcinoma. The first dataset contains data from
a previously published study by Kannan et al. [10], which is
Fig. 4. Schematic view of the entire
publicly available in the GEO repository under accession number
GSE22260. The dataset contains 20 samples from patients who
did not receive any preoperative therapy prior to radical prostate-
ctomy. The dataset contains more than 667 million paired-end
RNA-Seq reads that have been acquired using the Illumina Genome
Analyzer II platform, and which are stored in SRA format. Each SRA
file contains short reads of 36 bp in length for both forward and
reverse strands. The insert size for the prostate cancer dataset is
150 bp.

The second dataset contains data published by Ren et al. [13],
and is publicly available in the SRA repository under accession
number ERP00550. The dataset contains 14 prostate cancer sam-
ples from 14 different patients with various stages of prostate can-
cer, from Stage T1 to T4. Each sample contains an average of more
than 66 million reads around 6 Giga bases of sequenced
nucleotides.

We also used a third independent dataset to validate the results.
This publicly available dataset, which has been published by Rajan
et al. [30], can be obtained via the GEO repository under accession
number GSE51005. We used four pre-treatment samples corre-
sponding to four patients with newly diagnosed advanced/meta-
static prostate cancer.

Moreover, as a reference, we used Illumina Body Map 2.0, which
consists of 16 human tissue types, including prostate [31]. The raw
reads corresponding to each tissue were aligned to the genome and
then linked exons into tissue-specific transcript models using the
reads that span an exon-exon boundary.
4.2. RNA-Seq preprocessing

Since most of the well-known software packages, as well as all
packages that we use in this study, are only compatible with
FASTA/FASTQ format, we used SRAToolkit [32], developed by the
National Center for Biotechnology Information (NCBI), with
process for the proposed model.
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‘‘split-3” as parameter in order to obtain the FASTQ files in paired-
end format and feed them into the PASSion.
4.3. Splice junction detection

4.3.1. Reference genome alignment
In order to align the reads to the reference genome, we used

SMALT and SAMTools packages [16]. We also used the Human
Genome, Build 37 (GRCh37.p10) from the Genome Reference Con-
sortium [33], as the reference genome, which constituted the input
for PASSion and SAMTools.
4.3.2. Finding significant junctions
PASSion has been used for this step [16]. All optional arguments

have been set to default values as recommended by Zhang et al.
[16]. One of the important parameters, the cut-off limit, was set
to 0.1. This parameter implies that any junction where its cut-off
score falls short of this limit will be discarded.

Other important parameters include maximum number of SNPs
allowed, which was set to 2, while minimum intron size was set to
20, and the sequence error rate was fixed at 0.05. PASSion includes
details about the mapping of the split reads across each exon-exon
junctions in its output files.

PASSion stores the found splice junctions using BED format,
which supplies the means to store data for an annotation track
as standardized by the UCSC genome browser [31]. This format
requires three fields (chromosome name, the start and end posi-
tion of the desired feature in chromosome) as required. The start
and end positions of a junction can be calculated using the follow-
ing equations [34]:

Junctionstart position ¼ chromosome start position

þ block start ð1Þ
Junctionend position ¼ chromosome end position� block end

þ 1 ð2Þ
Fig. 5. Transforming each junction into a point.
4.4. Selecting junctions

Kannan’s and Ren’s datasets contain 20 and 14 cancer samples,
respectively. Due to these low sample numbers and also the high
probability of base pair errors in the mapping process, we identi-
fied the same junctions across all different samples with high accu-
racy. This step is necessary because a single base pair error
introduced in mapping, in either the start position or the end posi-
tion of a junction, could compromise the robustness of the whole
process for that junction. We developed a method to filter out less
relevant junctions to improve the accuracy of our method in find-
ing more meaningful junctions.

This issue can be modeled as a peak-finding problem in a three-
dimensional space. The solution to the problem of finding splice
junctions is based on alternative splicing, which means that in
some cancer samples, mRNA has been spliced differently than in
normal samples. We designed a fast and efficient method to
account for the inherent differences that have been introduced to
the system by running peak finding separately for start and end
positions.

Since start and end positions of each junction are the bound-
aries between exons and introns, we expect that in case of alterna-
tive splicing in each sample the same position would happen in
other junctions but with different start or end positions. It is
important to note that studying alternative splicing is possible
because we are mapping the reads against the reference genome.
4.4.1. 2-D peak finding algorithm
Each detected junction has a specific start and end position,

which are independent from each other. One way to find coinci-
dent junctions across different samples is to map the start and
end positions onto the two-dimensional space as in Fig. 5. The
x-axis corresponds to the start position, while the y-axis corre-
sponds to the end position. Once all junctions in all samples are
mapped onto the two-dimensional space, we construct a two-
dimensional histogram using the number of samples that contain
that junction as ‘‘frequency”. Due to slight misalignments (inser-
tions, deletions and/or substitutions) a junction in one sample
could appear in the vicinity as the same junction for another sam-
ple. Then, once the histogram is constructed, significant peaks or
‘‘clusters” are found by a new procedure described below.
Although the problem of finding centers or clusters in a two
dimensional space is computationally intractable (indeed, the
k-center problem is NP-complete [35]), the advantage here is that
the histogram is rather sparse – the peaks will tend to spread along
the main diagonal (Fig. 6). This is important, as there are a signif-
icantly large number of peaks, in the order of 400,000.

The peak finding module in the two-dimensional histogram
proceeds as follows. First, we process the histogram for ‘‘start”
positions by splitting the table into several smaller windows,
transform the data into a full matrix for each of them, and then
process the data in each window separately. For each start point,
only end points are deemed fit if they have their start position in
the vicinity of our unified start positions, and hence these points
act as a mean to limit the searching space to find a local maximum.
To obtain the final junctions, we run our peak finding algorithm on
the end points. Finally, we merge the results into a new sparse
matrix structure. We also implemented a safety mechanism to
ensure that no peak occurs within the boundaries of a window;
for junctions occurring at the edge of a window, the window is
adjusted to reach a length of at least 5 bp. We have developed a
module, which uses MATLAB to find the rough peaks [36], and
identified junction along the whole chromosome using the sparse
matrix as described.

We define a parameter called margin to be passed to this mod-
ule as a minimum peak distance variable, which defines the mini-
mum distance between two peaks. After the peak finding process
on start positions finishes, if position a is found as a peak, we



Fig. 6. Distribution of all junctions in chromosome 1 based on their start and end
positions.

Table A2
Running time of different steps in our proposed model. The times are given in terms
of the input size or number of junctions.

Step Running
time

Combine junctions of all samples and separate them based on
their chromosome

n

Project junctions to the x-axis based on their start position n
Create the histogram of the projected junctions on x-axis n
Run FindPeaks matlab function on start histogram Cn
Finding corresponding end positions for each junction n
Project junctions to the y-axis based on their end position n
Run FindPeaks matlab function on end histogram for each start

position
Dn2
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search for all junctions that have a start position in the neighbor-
hood of [a �margin, a + margin], yielding a set of end points for
the selected start points. Since the peak finding module discards
some start points near some peak, the margin parameter is used
Fig. A3. The elapsed time for finding the significant juncti
to account for them when analyzing end points in the next step.
Considering the minimum length of a junction as found in both
datasets, which is 19 bp, 5 bp is selected as the vicinity for combin-
ing junctions. This gives a safe margin near a quarter of the size of
the minimum intron. We chose margin of 2 to cover a 5 bp area of
the genome for each junction position. Algorithm A1 described in
Appendix A shows the pseudo-code of our proposed 2-D peak find-
ing method.
4.4.2. Scoring junctions and thresholding
Each junction is scored by following a scheme based on the

number of samples in which the junction is present for each partic-
ular class. Since we use Illumina Body Map 2.0 prostate sample as
our control, the ratio between cancer and control sample would be
20 to 1 in Kannan’s dataset and 14 to 1 in Ren’s dataset.

To compensate for the imbalance in the number of cancer
versus control samples, our model considers a +1 score for each
sample that belongs to the cancer group, and score C, as a compen-
sation parameter for each junction that is present in the control
sample. C is set to the number of samples in each cancer dataset.
By adding this parameter, we can equalize the overall score for
both cancer and control samples irrespective of their imbalance
sample size. The scoring formula is defined in Eq. (3). This scoring
scheme accounts for the imbalance that exist between the two
classes.

Scorejunction ¼ ð# of Junctionscontrol � CÞ
þ ð# of Junctionscancer � 1Þ ð3Þ

where the C parameter is �20 and �14 for Kannan’s and Ren’s data-
sets respectively.

Then, we limit the number of junctions reported by the filtering
mechanism based on a defined minimum score. As high scoring
junctions have occurred more frequently in only one of the groups,
they are expected to be more relevant as features for separating
cancer and normal samples.
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Appendix A

A.1. The 2D peak finding algorithm

Algorithm A1 shows the pseudo-code of our proposed two
dimensional peak finding method, PeakFinding2D. The algorithm
receives junctions from all samples as input. In the first step, the
junctions from all samples are separated based on their corre-
sponding chromosome. In our proposed method, each junction j
will be treated as a point in the two-dimensional space, where
the x-axis represents the start positions and the y-axis represents
the end positions of the junctions.

Algorithm A1. Two-dimensional peak finding method for unifying
junctions across different samples.

Algorithm PeakFinding2D
Input: Junctions table of size samples � chromosomes
Output: Set of uni-junctions {i, endPosition(i)} per

chromosome
margin 2 bp;
for each chromosome C do
Positions combine junctions of all samples corresponding to
C;
Project Positions to the x-axis;
Peaks FindPeaks(Positions,margin);
For each startPosition i in Peaks do
for j i�margin to i+margin do
endPositions (j) end points for all junctions starting

on j;
end for
endPosition(i) FindPeaks(endPositions(j),margin);

end for
end for

Next, we project the junctions onto the x-axis and create a his-
togram, where the height of the histogram shows the number of
junctions corresponding to each locus in the chromosome. In this
step, we use the FindPeaks() function from the Matlab Signal Pro-
cessing Toolbox to find the local maxima (peaks) of the junction’s
starting position. The parameter margin defines the minimum dis-
tance between two peaks. After the peak finding process on start
positions finishes, if position a is found as a peak, a search for all
junctions that have a start position in the neighborhood of
[a �margin, a + margin] is performed, yielding a set of end points
for the selected start points. Since the peak finding module discards
some start points near some peak, the margin parameter is used to
account for them when analyzing end points in the next step.
Considering the minimum length of a junction as found in both
datasets is 19 bp, 5 bp is selected as the vicinity for combining junc-
tions. This gives a safe margin near a quarter of the size of the min-
imum intron. The margin is set to 2 in order to cover a 5 bp area of
the genome for each junction position. In the next step, the same
procedure is repeated for end positions, again using the FindPeaks
() function from the Matlab Signal Processing Toolbox to unify the
endpoints. Finally, a set of (start, end) positions corresponding to
those unified junctions across different samples are returned as
the output.
A.2. Complexity of the 2D peak finding algorithm

The input to the algorithm is the set of detected junctions
obtained from PASSion. If the number of junctions is, n, the running
time of each different step of the process is listed in Table A2.

Here, C and D are constants. Thus, since we have a set of sequen-
tial processes for which the highest running time is proportional to
the square of the input size (number of junctions), the overall com-
plexity of the model is O(n2). We also measured the elapsed time
for finding significant junctions by using different number of junc-
tions as input size. The experiments were run on a desktop com-
puter with Windows 10 operating system, Intel i7-4770
processor and 32 GB of RAM. We also used Matlab 2015a for these
experiments. Fig. A3 shows the CPU times for the whole process,
where the x-axis represents the number of junctions and the
y-axis shows the measured time for obtaining the output of the
model (significant junctions). To make sure the comparison is not
biased by the junctions selected from different chromosomes, we
used 100 junctions per chromosome as the starting point and
extend it to 600 junctions per chromosome. As we observe in the
plot, the CPU time is proportional to the square of the number of
junctions used as input of the proposed model. A quadratic func-
tion y = 9.913e�07x2 + 0.001506x + 55.97 was fitted to the points
in the plot (solid line) with R2 = 0.9979, where x is the number of
junctions and y is the CPU time in seconds. As shown in the for-
mula, the coefficient of x2 is very small (9.913e�07). Considering
the total number of junctions for all patients in all chromosomes
in the dataset, which was around 3 million junctions, the complex-
ity of the model is very close to linear.
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